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3
NEW ESTIMATION METHCDS FOR LOG-LINEAR KODELS

by
Thomas C. Redman2
The Florida State University
Tallahassee, Florida 32306

\

log-linear models are proposed and their properties
considered in this article. Iar particular, ,Gonditions for
the existence of the nev estimatorspaiese easidy Tihrechked
tian “those-available for likelihood estimatorSggare derived,

and the new estimators are shovh tOo possess aprropriate

Two new methods for estimation of parameters in

asymptotic propertiesT\ KFY WCRDS: Y¥inimum d estimation,

approximate minimum 4 estimation, existence, 1limiting

distritution.
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United States government.
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1. INTRODUCTION

Two new estimation methods for parameters in log- ’

linear models are introduced in this paper. One of these

. particularly provides easy calculation and both are shown to
: have appropriate aéymptotic rroperties. Existence results
v Yield more easily verified conditions. The new methods are
Nt designated as the minimunrn d and the approximate minimur ¢
; method. We proceed with the development of needed notation
and background.

Following Haberman (1974), ve regard a contingency

Wt Ay b

table as a k-vector n, n' = (n1, coo s "k)' where ny denotes

the number of observations in cell i fror one of L
multinomial distributions., Specifically, the setrs
(ni: i e Il}’ £ =1, ¢0e, L, define inderendent multinomial
vectors,

> T OMIN > 0, % n. = 1),

1€1, i

vhere N‘ = p ngo and 11, ceeys IL are disjoint and
1 €1

) 4

{ni: i € Il L ni: i€ Il'"i

exhaustive subsets of {1, eees ke let n' = (n1 ec ey "k)
-~ ’

3
b | and P = (p1, ev oy pk), where p; = ni/Nl for i € Il' § i
' Corresponding to n and p, let 7' = (11. cevys yk), where §

I Yi = log nil i = 1, XX Y k' and log E' =

i (log Pyr eees log pk)' Finally, for a k=-vector x, let i

i exp x' = t(exp Xyr eees XP xk).

The development of log-linear models was heralded
by Bartlett (1935) and by Roy and Kastenbaum (1956). They
define interactions in terms of constraints on products of
elements of . Birch (1963) shows that these constraints
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coincide with constraints on linear combinations of elementc

o y. Most generally, in a log-linear model, the parameters
y are constrained ty B,y = Om, 0 £ m<k ; wvhen m=0, therc
are no linear constraints on y. The matrix 81 is assumed to

be an m x k matrix with orthonormal rows and to satisfy

B A= Ot (1.1
where A is the kK x L matrix given by
1' i e Il'
ail = (1-2)

0, otherwvise,

“e denote the parameter space of y by F(B1). Let

rc = {Y: z exp Yi = 1, L = 1, ooo,L}u (1.3)
= - i€1
£
ana
= R _ k
rx(§1) - {1. §11 - gm' 1 e E }. (1'“)
Evidently
F(§1) = rsr\rn(§1). (1.5)

Since its rows are orthonormal, we may augment 81

to a k x i'orthonormal matrix through addition orf aaditional
LOVWS B? and define

B' = [E.‘o Ezlo (1.6)

Reparameterization of y defines

W e
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4 = B Ye (1.7)
7 = E'“' (108)
Since Y € Fx(§1) implies §1 y = gm'
uoo= Cuge up) = (00, wyd (1.9)
(1.8) reduces to
1' 52 :21 (1010)

and (1.10) rprovides an alternative formulation ot the

general log-linear model.

There are many methods for estimation o:r the
parameters of a log-linear model, the method ol maximur
likelihood being the rest known. Lstimation equations for
the g¢general log-linear model are easily derived by the
methods of Birch (1963) or laGrange (Apostol, 1957), and,
tor L=1, are given by

91 Y= gm'

82 lp - exp y) = 0 . (1.11)

kK=n

Generally, eguatiorns (1.11) require iterative solutiou.
Conditions. under wvhich solutions may be olttained explicitly
are available (Andersen, 1974, Bishop, Feinberg, and
Holland, 1975).

Haberman (1973, 1974) and Andersen (1974) consider
the existence and uniqueness of the likelihood estimator.
Their results, 4in our notation, are summarized in the
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following theoren.

Iheoren 1.1: If a maximum 1likelihood estimatcr
§ of vy exists, it is unigque, and satisfies (1.11).

Furthermore, any of the following conditions 1is necessary
and sufficient for the existence of a likelihood estimator:

i) there exists a vector ¥ which satisfies (1.11),

ii) there exists a vector v such that Bzv = ok-m’ ana

p, +v, >0, 1i=1, +e0, kK, and

i i

iii) there exists no vector

te

such that B1v =

'(‘)*m, ViSO' i= 1' Ceoep k' :#SK' andg‘z:O.

Exceprt in specific cases, the conditions ot
Theorem 1,1 are difficult to apply in practice.,

The parameters of a log=-linear model may bhe
estimated alsoc by the —rrinciple of weighted least squares
(Grizzle, Starmer, and Koch, 1969, Koch gt._gl.

1977 .

Foth the weighted least sqguares and the maximun
likelihood approaches lead to estimators with good
asymptotic properties. 1In Section 2, we introduce the two
nev estimation methods. Existence and uniqueness of the
estimators are discussed in Section 3 and, in Section 4, it
is shown that the new estimates also have good asymptotic

properties.
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2. HBIRINUN ¢ ESTINATION
2.1 The !101.“! é Hethod

Minimum J estimation is not really new, as ¢ is
included in the class of functions studied by Neyman (1949),
Taylor (1953), and Ferguson (1958), the minimizatior of
which leads to B.A.N. estimators. It does, however, seem to
have special efficacy for log-linear models and leads to the
approximate ainimum Jd estimation method discussed 1in
Section 2.2.

Let

n.{(log p. = v.) (2.1)

Q.
~
~
-
o ]
~
"
-l ™M

i=1
(log

1'c ¥
lz +

- 1)' (log P - 1).

vhere N is the diagonal matrix with entries Dareesy nk. 1f,

for some |, ni is zero, the contribution to d(y; n) of the

ith cell is taken to be zero. Further, we use

0 (log )3 =0 , (2.2)

since

yd l1in N [p, (log pi)ql
p.=->0 :
0t i e Ipo £=1, «euy L.

lim n,(log p
ni—>0 i i

-

The minimum 6 estimator ¥ of y is defined to be that point

in F(B1) wvhich wminimizes d(y:; n). Equivalently, # and ®

denote the corresponding estimators of u and = respectively.
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In analogy to the likelihood estimator, the
minimum J estimator satisfies a system of equation whenever
it exists. This system is given by the following theorenm.

Theorem 2.1: If a minimum J¢ estimator Y of 7y

-~

exists, then it satisfies the equations,

B, {N(log p = ¥ - y(¥)) =0, .. (2.3)
?.1:7: = gml (2-“)
and
b3 exp ".ii= 1,l= 1' X RN} L' (2.5)
i €1
[ §
where y(y) = Iy1(7). ceas Yk(v)l,
yj(z) = (exp 7j) b} ni(loq pi - 11) (2.6)
ie€ IX
tor J G I l = 1' o0 e Lo

ll

Froof: The theorem will follow from LaGrange's
Theorem (Arostol, 1957, Th. 7-10; Williamson et_al., 1972,
P. 595) upon verification of the conditions of that theorenm.
The set (Z: L € 0, 14 =1, «oeys kY 1is associated with the

open set of the theorem. The constraint functions are

and

<Aria.

(R R SRS EE Y PRRPE Y




and they vanish on r(e1).

The matrix

S R A (2.7
where Sl = (el.', o0 e p elk)p
exp vy 1€ Il'
eli = 0 (208)
d ie€ Il'

is of full rank, since F1 is of full rank and it may Dbe
1 ]
proven that no row e, is a linear combination of rows of E1.

The proof follows by contradiction. Suppose that

. m
e, = % a, b,.,
e 4 521 i <13
where §1j
denotes the jth row of 81. Then we know that
e = Vv
but
. m o
e, 1 = (%I a,B,)Y = T a.(B 1.) =0
-~ -k gaq 03 =137ak T goy T3Te13 -k
by (1.3) and the contradiction
- ~ < R R A AR

i
3
!
i
3
4
-
*
k]
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is established.

Finally, since it is apparent that dJd and the
constraint functions have continuous partial derivatives
wvith respect to Yir J = 1, eees k, on

; J
{1: 71< 0, i = 1, eees k), the conditions of LaGrange's

Theorem are met.

L
¥(y; n) = d(y; n) + ¢'B11 + 2z Al ( Z exp vy = 1)

be the lLagrangian function for the minimization of ¢ subject
to vy GT(B1). Then LaGrange’'s Theorem implies that, given

¥ € F(B1), values of the m=-vector ¢, and A1, cvey AL exist

satisfying the equations,

d w(y: n) m
= =2n_.(log p. = J.) + X ¢. k..
¢ vy y=y 3 3 b y=q 1+ 133
+ Al exr 73 = O' j € I[' l = 1' es o p I.,

(2.9)

where b1ij is the (i,j) element of B1. Summation of the

subset of eguations (2.9) over 3 € Il yields

- ' [N - | =
2 z n__j (log pj 7j ) + Al 0, (2.10)

j € Il

the terre involving blij's vanishing due to (1.1). With the
use of (2.10) and vector notation, (2.9) becomes

RS WEl NP 1 5 it aih At Gk A AATBN 2 b b




=2 N(log p = §) + B,¢ + 2y(§) = 0,, (2.11)

where y(¥) is given by (2.6). Premultiplication of (2.11)

by B1 vyields
-2 B.N(log p ~ 7) + ¢ + 2 B, y(Y) =0, (2.12)
which implies

¢ = 2 B,N(log p - §) -~ 2 P1 Y(y). (2.13)

Substitution ot (2.13) into (2.11) yields

L]
(1 - B1F1)[N(loq p - ¥) - y(¥)] = Oy, (2.14)
By
and, with premultiplication ty B = R (2.14) reduces to
= -2
B5[K(log p = §) = y(Y)) = 0, . (2.12)

Thus, ¥ must satisfy (2.3), and the constraint

equations (2.4) and (2.5). This completes the proof.

The system (2.3) - (2.5) contains k + L eguations.
We <can shov that | equations of (2.3) are redundant.
Without loss of generality, we take the first L rows of B

-
-d
.

as proportional to the rows of A , where A is given by

(1.2). Then,
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e - e

- 11 =
[ ]
A (N(log p = ¥) - y(¥)I
(i b3 n.(log p. = vy )1(1 =~ I exp vy 3
1e1, ! i i 1 €1, i
= = 0
[ T n.(log p. = ¥.)1(1 - z exr ¥.)
“1eIL i 1 i per 1

by (2.5). Computation of ¥ may be effected through solutior

of (2.4), (2.5), and the 1last (k = m - L) equations of
(2.3).

2.2 The Approxisate Ninimum J Nethod

Calculation of the minimum J estimator ecessarily
involves solution ot equations (2.4), (2.5), and the last
(k = m - 1) eguations of (2.3). As this systenm is
nonlinear, 1its solution may prove to be a formidable task
inédeed. 1In this section, we develop an approximation to the
minimum J estimator, one which is examined as a new
estimator. The method is of interest because the
approximation, unlike the minimum J6 estimator, is relatively
easy to compute, and, like the minimum d estimator, has good
asymptotic properties. Furthermore, an approximate mininuc

d estimator always exists.

'As noted, minimization of & over F(B1) K&y prove

to be a difficult problem. A somewhat simpler prollem ics
the minimization of 4 over rP(B1). and this 1is the idea

behind the approximate method.
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let 73 denote the approximate minimum d estimator,
Roughly, to calculate 7a' ve first obtain the "projection"”

of log p in TH(B1) through the minimization of d(y; n) over .

r"(81). let 1y denote the result of this minimization. The

approximate minimum dJ estimator 7& is the "projection" of

-

1t

i r obtained through minimization of d*(y; ¥) =

S, -

n
K 2 _
? I (exp y, = exp v.)“/(exp y,) over FS (see Figure A).
: i=1 i i i

}

!

|

The description in the preceding paragraph ic I
i oversimplified 4in that the existence and unigueness of
! Y and 7a are tacitly assumed. In the next section, we show

that such points do exist, though they need not be unique.

¥Yore formally, let

r = {;: ; minimizes 4 over FH(B1)), (2.16) f
- - {
i
4
and 5
:
3
3
cly) = A’ exp v, (2.17) 3
- - - - *
4

where A is given by (1.2). An approximate wminimum d

estimator of y is given by

v, = Y - Allog c(y)), (2.18)
i — el .




vhere [log c(Y)I]' = [log c1(7), eee, log cL(?)l, and i €Tr.

We denote the set of points given by {(2.18) as Fa and let

% and ﬁa denote the <corresponding estimators of n and 4

respectively.

It is Clear that "projection®™ of log p

into I“’(Bl ) leac to the set ' In the following lenmra,

we prove that the “"projection" of Y € T in FS obtainea
’

-~

through minimization of d*(y; 7y) over rs is the point ¥

’ PoY-
given by (2.18)., We then prove that any element of ra lies
in F(B1), as depicted in Figure A.

lempa 2+31: The minimum of

>

- ~ z - .
. = -
a*(y: Z) (exp Y5 exp 71) /exp Y over rs is

z
- i=1
attained at ¥ where 7a is given Lty (2.18) for any vector

a,
€T.

[ R ]

Broof: let Yo be any element of FS There exists

a k=-vector e such that

eXF Yoy = €; * exp vy, .-

i

Since 12 and 7a are elements of rs it may be shown that
- - - ’
I e, = 0, £ =1, ¢ees L. (2.19)
i€ Il
i b e e )
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To proye the lenmnma, ve show that

8* (743 2) 2 ¢*(§,; y). Note that

k
- - _
e (yy: 1) = 151 (e, + exp v,y = exp y ) ésexp v,
- k 2 _
= dt(za; Z) + .Z ei/exp v
i=1
L -
-2z z e.[1 =~ exp y_./exp v,)
£=11 € 1, i ai i

by (2.17) and (2.18). Finally, by (2.19), we have
- - ) 3 2 -
d-(lo; Z) = d-(la; z) + E ei/exp 71

2 90 (¥, i)

and the proof is complete.

.Iheorem 2.3: Any ¥, €T, lies in T(B,).

[

Proof: By (2.17) and (2.18) 7a lies in rs. To

showv 7a lies in FH(B1), ve note that

P PO R VI G wr o TR
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e e e s

8,7, = 512 = B,Allog f(z)"

= 0

’
[ ]

by (1.1) and (2.16)0

3. EXISTENCE AND UFIQUEKESS OF THE NINIEUN J AND
APPROXIBATE NINIBUN J ESTIEATORS

3.1 1Introduction

#hen each cell of the contingency table «contains
at least one observation, 1likelihood, minimum &, and
approximate minimum d estimatcrs may be shown to exist and
to be unique. Problems may arise, however, when some cells
are empty. In this section, we show that an approximate
minimum ¢ estimator always exists, and give a usable,
necessary and sufficient condition for the existence of the
minimum d estimator. The minimum d estimator is shown to be
unique wvhenever it exists. The approximate wminimum ¢
estimator need not be unique; a necessary and sufficient
condition for its uniqueness is given.

Throughout this section, we shall assume that 81
has 1less than k = L rows, for vhen B1 has k = L rows, r(e1)

contains only a single point, and likelihood, minimum 4 and
approximate minimum J estimators must exist and be unique.

we make use of the following notation and
definition 4in this section. 1In analogy to r<a1). for an L~

vector a., Ol > 0, ‘ = 1; cee L' let

Az Y

’
)
i
3
i
5
E§
p




exp 71 = O‘I l = 1, cs ey L}.

(3.1)

In this notation F(B1) = (R 1.)

LI #

Pefinition 3.1: A segquence of k-vectors {xr}°:=1

is said to possess the star property if

i) {xtj):=1 either converges or diverges properly, j = 1,

eves K, and

ii) there exists j such that limr sup xrj = =o

3.2 Uniqueness of the Kiniasum J Estimator

iheorem 3.1: If a minimum or d over F(B1) exists,

it is unique.’

To prove Theorem 3,1, we reguire a seqguence of

three lemmas:

lgmmﬁ 301: let al>0,l = 1,...,L,ni>0,i=1,...,k,
and q be a positive integer. The function,

kK
" $,lyin) = I n.(logp - 1i)q. (3.2)
-~ - i=1 1

attains a minimum over P(B1, a),

L aa e Braen s a o




lepma 3.2: Let 0 < @, £ 1. For any £, £ = 1, cees
L,

ni(loq P; - 11) 2 -N‘ log °y

(3.3)

for ZG Fs(ax) = {

-
.

and

lemma 3.3: (i) let y € rn(§1)”rs‘°(" with

0 < a, £ 1. Then

d‘l)(yz n) = z ni(loq Py = 71)2

i€ I,

) - .
2 ¢ (I log a, 51' n),

with strict inequality if °l < 1.

(11) If YG]'(B 0), 0(0,51,‘31' (XK N L' vwith al( 1

- ~1'~

for some [, then

d(y; n) > 6(y = A log a; n). (3.4)

‘The proofs of each lemma, and then of Theorem 3.1 are
straightforvard, and so are omitted,

v b P 0 o b0 eI -
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3.3 Existence and Unigueness of the Approximate
Hinimum J Estimator

The main results of this section are that an
approximate minimum J estimator always exists, and that it
is unique if and only if (52 N Bz') is nonsingular. These

- o

; results follow from Lemma 3.4, which describes the nature of
I'in (2.16), and is stated without proof.

Lepma 3.4: The set T is a nonempty, affine set of
dimension k = mn - rk (B2 N Bé) and is given by

Y = B_I(B, K B,)” B, N log p (3.4)

2 22 - - -2 -

=31
]
-~
1=
.
1=

k=m

+ {1 - (B, ¥ By') (B, N B,') 23],z €E" "3,

wvhere the notation is such that A is a generalized inverse

oz A. If (B, N B.') is of full rank, then T is a singleton

set. Furthermore, if YeT, Cl(;) 2 1 , vhere c((V) is the

lth element of c(y) given by (2.17).

1heorem 3.2: The set ra is nonempty. Furthermore

ra is a singleton set if and only if rk(B N B ') = k=m .
2T T2

Pragf: The theorem follovws immediatelvy from Lenmma
3.4 vhen it 4is noted that each element y of I leads to a

-~

distinct § ¢ l“a s through use of (2.18).
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3.4 Existence of the Kinimus d Estimator

The existence of the minimum d estimator depends '
upon the space F » Which vas defined in Section 2 and vhose
properties were npoted in the previous section. Let

r» ={y: 7yer, = exp?i = cpe L= 1, eee, L}, (3.5)

ieI‘

1=

vhere i
b
€g = inf {c, (y)3 = inf € I exp v}, £ =1, «o0,L, (3.6) E
el - jeT iel 3
~ - /4 <

f( !
In thig subsection we show that I'* is either an f

¥

empty or singleton set, and that a minimum Jd estimator
exists if and only if F' is a singleton set.

lepms 3.5: If F* is not empty, ¢then it is a
single point.

Proof: The proof 4is by contradiction. Suppose
- - -—* - -
that Y4 and Yo are both contained in I' and that 11 # Yo

Since I is an affine set (lLemma 3.4), ¥3 = %(;1 + 72) €T.

Furthermore, since the exponential is a convex function,
there exists £ for which

2
1 - -
c, =5 2Z I exp vy > z exp Y, (3.7)
L 24046 1, 1T e 1, 31

But (3.7) contradicts the fact that




) — N
- 2 O L . -
c, = inf z exp ; = z exp ; = P exp ; .
{ DI, i 11 2i
7€ T i € Il i € Il i € Il ' ‘
1]
and the lemma is proved. E
let |
FC(E1, g) = {1: 51 Y = Em' I exp v, £ age £ =1, eees LD,
ie€ Il :

(3.8)

NS B E P IRE L N e

The following is a technical result needed to prove the main

enbor

result of this article.

lemma 3.6: Suppose that ¢ has a unique minimur

%4 .
over TC(E1' g). Then, 1if {Zr}r=1 is any sequence of

points in FC(B1 @) with the star—=property,

’

lim_inf 6(y*: n) = =
LA

*

We now show that the nonemptiness of T is
necessary and sufficient for the existence of a minimum ¢

Bl At b Bt e B o

estimator. i ‘
o \

Iheoren 3.4: A minimum J estimator exists if and

only if T* is nonempty.

Progs: Suppose that F' contains ¢the point ;'.

Then ;' mininizes d over rc(a , c) and is unique by Lemma
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3.5. If €y 3 ., is a sequence of points in I'(B,) with the

star property, then, by lemma 3.6,

limrinf (Zr;n) z ® . (3.9)

Note that a = =log(A A’ 1) € I'(B,), and that d(a ; n) is
a2 S 21 a

finite. This, the fact that ¢ is continuous, and (3.9)
imply that a minimum of & over [(B,) exists. This proves

sufficiency.

0

Now suppose that I'* is empty, ana let {y_2

- -l =1
be a sequence of points in I such that
lim I exp y_. = C,, £ = 1, eees L. (3.10)
r 1ie1l ri £

From the continuity of the exponential function and the
definition of cl
since P' is empty, must possess the star property.

in (3.6), such a segquence must exist and,

Let
Zt.=1t-i1°° s(lr)c r =1, 2, ceey (3.11)

and note that 7r' €TIr(B.)y, T =1, 2, coe o To prove

necessity, ve need to show that

v AN .mdr
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limrlnf d(zr'; 2) < > (3.12)

To prove (3.12), we note that

L
S(y_*; n) = 8(y_; n) + I (log c_,)2 3 n,
T - ~r’ o £=1 o 4 i€ Il i
L
+ 151 2 log Cre iEI ni(loq Py - 71),
L
(3.13)
vhere ¢ 1 = b3 exp Yri? £ =21, eees L.
1 €1, .
Since
I n.(log p, = v.)
1er, ! 10
= b3 n.(log p, = y.) i
{1 € I,:(log py=y 121} 1 1 i i
+ T n,(log p, = y.) i
i i i i |
{4 € I‘zlloq pi-7i|<1} i
. 2 ]
s z ni(loq Py Y,) + Nl :

{1 € Il:lloq pi-yilz1}

S

T n,(log p, = v )2 + N _, £ =1, eas, L,
Aie1, t to / B ‘

£

(3.13) implies that
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L 2
d(zr'; 2) [ d(lr; E) + ‘21 N‘(loq Crl)
+ 2 log Cr[d(yr; n) + NJ), (3.14)
where
C_ = max Crl' (3.15)

Lor=1,...,1

Note that d(yr; n), N, and Nl' L =1, eeer L do not depend

on r, and that Crl and Cr tend to finite limits by (3.10).

Thus

L. .. L )
llmrxnf d(lr ; 2) £ llmrlnf{d(zr. n)

L
2
+ Zl Ny(log e, 0)° + 2 log C [6(y; n) + )
< ® ’

which establishes (3,12).

We have exhibited a sequence of vectors {lr.):=1

in r(E1), and hence in FC(B1, 1L). which violates the

conclusiofi’ of lemma 3.6, and hence implies that no vunique
minimum of d over FC(B 1L) exists., Thus, either no

~1' -~

minimum exists or the minimum is not unigue.

Suppose two distinct vectors 74 and Y, wvhich

minimize ¢ over l‘c(B1 1L) exist. By part (4i) of lenmama
-ty m

Boaviots
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3.3, Y, and Y, must lie in r(B1). But this <contradicte
Theorem 3.1, which states that, if a minimum of d over F(E1)

exists it is unique. Thus no minimum exists. This proves

necessity, and the proof of the theorem is complete.

The following corollary is useful and follows fron
Theorems 3.2 and 3.4.

Cerollary 3.4: If (B, N 52’ ) is of rank k-=m,

then a minimum Jd estimator exists.,

4. ASYBPTOTIC PBOPERTIES

As the sample sizes Lecome large, since n, > 0,
the probability that each «cell 1in the contingency table
contains at least one observation tends to one. Therefore,
the probability that the defined estimators exist and are
unique tends to one by Corollary 3.4 and Theorem 3.2. Thus
ve assume that the various estimators exist and are unique
and consider their asymptotic properties. Further, we

assume that there exists an L=-vector e, e, > 0, £ = 1, eeeo

4
L, such that

lim Np/N = ey,
N'N ->m

vhere Nl denotes the sample size for population
L

e L =1, ¢ees L, and N = % N‘ denotes total sanple size.
[=1

Twvo main results are given in this section.

-3 e
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The first result is Theorem 4.1. Tvwo seguences of

X © * -] .
random ke=vectors, {EN}N=1 and (!N }N=1 , are said to be aN

limit equivalent in probability (aN - l.e.p.) 1if

(4.1)

lheorem 4.1: Any pair of the maximum 1likelihood
estimator ;, the minimum J estimator ¥, the approximation

¥ , and y are /N = l.e.F. o
L) I

Prooi: We prove that y and y are /Y = l.e.p. tc

give an indication of the method of proof of the various

pairvise results.

likelihood estimation is reviewed in Section 1.

As a slight generalization of (1.11), wvwe have

?-1 2 = gml (“02)
and
B, E(p - exp §) =0, o (4.3)

vhere E denotes the diagonal matrix vhose ith element equals

er 1 € I,, £=1, «.u, L. From the definition of Y in Section

S

12, bl s vrs ah Baadeib, £ 4
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2, the minimization procedure yields

B y =0 (4.4)
S ~m
and
B, N(log p - y) = 0, __. (4.5)
Replacement, in (4.3), of exp 71, i =1, .00 K,

by its expansion atout log pi yielgs

Lod 1 ”~
B, E b, - p, - pi(¥; - log p;) - S(exp vy, - log pl)2)

&Y B, N(9 - log p) + I e, £y o }

=0 (4.6)

vhere ¥ is the diagonal matrix wvith elements exp Vo ey

exp Y , and ¥' = (w1, evsy vk) is such that v lies Lbetveen
-« -
log Py and ?i' 1 =1, soer ke

RO
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Subtraction of N times the expression in (4,6)
from (4.5), and subtraction of (4L.4) from ( 4.2) yield

51(2 - 1) = em (4.7)
and
(Y4 = 1log 91)2
By MG - D v gy By j > = O (we®)
¥y - loa pk)2

Slutsky's Theorem (Serfling, 1980, p, 19) implies that

r
2B, Ny - - JSRB, N E(® -7 =>0,, (4.9

- - ~ ~d e e e

where 1 denotes the diagonal matrix with elements
|
hl' iée Il' and pi -> nin

"1' cees nk' since ni = pi

To complete proof of this part of the theorem, jt
remains to show that

A0 Sk L B st




2
(71 - log p,)

/K 52 E v => 0, .o (4.10)

2

7x - log p,)

Since ¥ and log p are consistent estimators of v, v => v,

and, since /i(?i - v;) and /N(log p; = yi) have limiting
distributions, Slutsky's Theorem determines that

2
(?1 log p1)
o]
VN : -> 0, . (4.11)
- 2
($k log pk)

Finally, (4.7)=(4,10) imply that

lw
ta
tem

- F

tm

» NE

and, since 15 of full rank,

S R s 4B e OWNA S Sy
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N(? - 7) -2 Ok.

and the proof is complete.

The second theorenm of this section follovs.

Iheorem_4.4:
P
* 2 L 2
é(y 3 n) = X°(y ; n) => 0, (4.13)
where the tunction

2 L 2
X“(y:; n) = I z N‘ (pi - exp 71) /exp LA

- - f=1 1€ Il

»
is the well-known Pearson function, and vy denotes any of

the likelihood, minimur &, or approximate minimum

estimators.

*
This result is proven by expansion of exp L8 in
*
the numerator ofx2(7 s n) about log Py

Theorem 4.2 allows us to test the null hypothesis,
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tm

n+m

tw
-

L ] - .
vhere 81 is an m x k matrix with orthonormal rows such that
L
81 A =0 » against the salternative hypothesis,
-1 - 0" x L

Define T = d(y;oz n) = d(y

- R
where Yro and YHa are estimates of y under

H and H

0 a

respectively. The limiting distribution of test statistics

based on xz, and, in viev of Theorem 4.2, of T are given by
Mitra (1958) and Diamond (1963) for various m. and "local

alternatives”. In particular, under Ho,
]

T has

a limiting

chi=-squared distribution with m degrees of freedonm.

S. CONCLUDING REMNABRKS

The emphasis in this paper has been on the Dbasic

properties of the minimum ¢ and approximate minimum ¢

estimators. Their existence properties have been considered

and they have been shown to have large sample properties

equivalent to those of likelihood estimators.

The minimum ¢

and approximate winimum J methods lead to asyamaptotic chi-~

squared tests analogous to those of the Pearson goodness of
fit statistic.

-
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A second manuscript will deal with the application
of log=linear models and the nev estimators to the
classification problem of Martin and Bradley (1972). The
existence results and test procedures will be illustrated
there, and extensions to the problem considered by lMartin
and Bradley (1972) diven.
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A. Geometrical interpretation of the approximate minimum &
estimator. The "projection" of log p intol(B,) is Y. The

. s ” _ . . ~
projection” of y into rs is x -
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